Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Understanding how latitudinal temperature variation shapes local adaptation of life history strategies is crucial for predicting future responses to warming. Contrasting predictive frameworks explain how growth and other life history traits may respond to differing selective pressures across latitude. However, these frameworks have rarely been explored within the context of fluctuating environmental temperatures across longer (i.e., seasonal) time scales experienced in nature. Furthermore, consequences of growth differences for other aspects of fitness, including reproductive output, remain unclear. Here, we conducted a long-term (17-month) simulated reciprocal transplant experiment to examine local adaptation in two populations of the predatory marine snail Urosalpinx cinerea separated by 8.6 degrees latitude (1000 km). We reared F1 offspring under two seasonally fluctuating temperature regimes (warm and cold, simulating field thermal conditions experienced by low and high latitude populations, respectively), quantifying temporal patterns in growth, maturation, and reproductive output. We identified striking divergence in life-history strategies between populations in the warm regime, with offspring from the low latitude population achieving greater growth in their first year, and high reproductive output coupled with reduced growth in their second year. In contrast, the high latitude population grew slower in their first year, but eventually attained larger sizes in their second year, at the expense of reduced reproductive output. Responses were consistent with this in the cold regime, although growth and reproductive output was reduced in both populations. Our data provides support for adaptive divergence across latitude consistent with the Pace-of-Life hypothesis, with the low latitude population selected for a fast-paced life characterized by rapid development and early reproduction. In contrast, the high latitude population exhibited slower growth and delayed maturation. Our results highlight the potential limitations of short-term comparisons of growth without considering processes over longer time scales that may exhibit seasonal temperature variation and ontogenetic shifts in energy allocation and imply a radical reshaping of physiological performance and life history traits across populations under climate change.more » « lessFree, publicly-accessible full text available June 26, 2026
-
ABSTRACT As women are underrepresented in STEM and the home learning environment has been associated with children's science knowledge, this study focuses on the home science environment as an area where gender differences may occur. To identify potential antecedents of gender differences, this study examined whether there were mean differences in the frequency of parent engagement in science content, processes and resources by child gender and parent relation. 906 parents of 1‐ to 6‐year‐old children (67% female, 86% White, 50% female children) completed a cross‐sectional online survey about the home science environment. Results indicate no significant differences in the frequency of science engagement between parents of girls and parents of boys and between mothers and fathers (η2 < 0.01). We did not find any significant gender differences in parents' reports of their frequency of engagement in early home science activities across content, processes and resources.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Disruptions to education systems (e.g., the COVID‐19 pandemic) evoke a range of responses from teachers. Teachers are required to learn new skills, attend to students' social emotional needs, modify their instructional approaches, and discover innovative ways to engage their students in science, technology, and engineering courses, all while managing their own professional and personal needs. Although teachers of all disciplines adjust their instructional and curricular approaches in response to disruptions, the impetus for this study was to explore the unique challenges of science teachers during the COVID‐19 pandemic that affected their sense of agency (sense of control). To understand how science teachers acquired, used, and invested in capital (i.e., available resources with the potential to meet identified challenges) to achieve professional agency, we studied 113 science teachers in 2020−2021 when they experienced disruptions associated with the pandemic. An analysis of open‐ended responses from 60 teachers indicates that teachers who achieved agency shared four attributes. They (i) demonstrated an awareness of needed capital, (ii) acquired capital, (iii) used capital, and (iv) dedicated effort toward capital‐building for future use. Our findings inform science teacher educators and schools that are committed to mitigating science teacher attrition by understanding how teachers respond to personal and professional stresses.more » « less
-
We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.more » « less
-
null (Ed.)The locomotion strategies of fossil invertebrates are typically interpreted on the basis of morphological descriptions. However, it has been shown that homologous structures with disparate morphologies in extant invertebrates do not necessarily correlate with differences in their locomotory capability. Here, we present a new methodology for analysing locomotion in fossil invertebrates with a rigid skeleton through an investigation of a cornute stylophoran, an extinct fossil echinoderm with enigmatic morphology that has made its mode of locomotion difficult to reconstruct. We determined the range of motion of a stylophoran arm based on digitized three-dimensional morphology of an early Ordovician form, Phyllocystis crassimarginata . Our analysis showed that efficient arm-forward epifaunal locomotion based on dorsoventral movements, as previously hypothesized for cornute stylophorans, was not possible for this taxon; locomotion driven primarily by lateral movement of the proximal aulacophore was more likely. Three-dimensional digital modelling provides an objective and rigorous methodology for illuminating the movement capabilities and locomotion strategies of fossil invertebrates.more » « less
An official website of the United States government
